Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
1.
ACS Sens ; 8(6): 2309-2318, 2023 Jun 23.
Article in English | MEDLINE | ID: covidwho-20238622

ABSTRACT

We adapted an existing, spaceflight-proven, robust "electronic nose" (E-Nose) that uses an array of electrical resistivity-based nanosensors mimicking aspects of mammalian olfaction to conduct on-site, rapid screening for COVID-19 infection by measuring the pattern of sensor responses to volatile organic compounds (VOCs) in exhaled human breath. We built and tested multiple copies of a hand-held prototype E-Nose sensor system, composed of 64 chemically sensitive nanomaterial sensing elements tailored to COVID-19 VOC detection; data acquisition electronics; a smart tablet with software (App) for sensor control, data acquisition and display; and a sampling fixture to capture exhaled breath samples and deliver them to the sensor array inside the E-Nose. The sensing elements detect the combination of VOCs typical in breath at parts-per-billion (ppb) levels, with repeatability of 0.02% and reproducibility of 1.2%; the measurement electronics in the E-Nose provide measurement accuracy and signal-to-noise ratios comparable to benchtop instrumentation. Preliminary clinical testing at Stanford Medicine with 63 participants, their COVID-19-positive or COVID-19-negative status determined by concomitant RT-PCR, discriminated between these two categories of human breath with a 79% correct identification rate using "leave-one-out" training-and-analysis methods. Analyzing the E-Nose response in conjunction with body temperature and other non-invasive symptom screening using advanced machine learning methods, with a much larger database of responses from a wider swath of the population, is expected to provide more accurate on-the-spot answers. Additional clinical testing, design refinement, and a mass manufacturing approach are the main steps toward deploying this technology to rapidly screen for active infection in clinics and hospitals, public and commercial venues, or at home.


Subject(s)
COVID-19 , Nanostructures , Volatile Organic Compounds , Animals , Humans , Electronic Nose , Reproducibility of Results , COVID-19/diagnosis , Breath Tests/methods , Volatile Organic Compounds/analysis , Mammals
2.
Int J Mol Sci ; 24(11)2023 May 26.
Article in English | MEDLINE | ID: covidwho-20232955

ABSTRACT

The term "liver disease" refers to any hepatic condition that leads to tissue damage or altered hepatic function and can be induced by virus infections, autoimmunity, inherited genetic mutations, high consumption of alcohol or drugs, fat accumulation, and cancer. Some types of liver diseases are becoming more frequent worldwide. This can be related to increasing rates of obesity in developed countries, diet changes, higher alcohol intake, and even the coronavirus disease 2019 (COVID-19) pandemic was associated with increased liver disease-related deaths. Although the liver can regenerate, in cases of chronic damage or extensive fibrosis, the recovery of tissue mass is impossible, and a liver transplant is indicated. Because of reduced organ availability, it is necessary to search for alternative bioengineered solutions aiming for a cure or increased life expectancy while a transplant is not possible. Therefore, several groups were studying the possibility of stem cells transplantation as a therapeutic alternative since it is a promising strategy in regenerative medicine for treating various diseases. At the same time, nanotechnological advances can contribute to specifically targeting transplanted cells to injured sites using magnetic nanoparticles. In this review, we summarize multiple magnetic nanostructure-based strategies that are promising for treating liver diseases.


Subject(s)
COVID-19 , Liver Diseases , Nanostructures , Humans , Regenerative Medicine , Hepatocytes/transplantation , COVID-19/therapy , Liver Diseases/therapy , Stem Cells , Liver Regeneration , Magnetic Phenomena
3.
Ther Deliv ; 11(9): 541-546, 2020 09.
Article in English | MEDLINE | ID: covidwho-2319552

ABSTRACT

The present industry update covers the period 1-31 May 2020, with information sourced from company press releases, regulatory and patent agencies as well as scientific literature.


Subject(s)
Drug Delivery Systems/trends , Viral Vaccines , COVID-19 Vaccines , Clinical Trials as Topic , Coronavirus Infections/prevention & control , Device Approval , Drug Industry , Humans , Nanostructures , Viral Vaccines/administration & dosage , Viral Vaccines/pharmacokinetics , Viral Vaccines/supply & distribution
4.
Molecules ; 28(9)2023 Apr 27.
Article in English | MEDLINE | ID: covidwho-2313883

ABSTRACT

Electrochemical biosensors are known as analytical tools, guaranteeing rapid and on-site results in medical diagnostics, food safety, environmental protection, and life sciences research. Current research focuses on developing sensors for specific targets and addresses challenges to be solved before their commercialization. These challenges typically include the lowering of the limit of detection, the widening of the linear concentration range, the analysis of real samples in a real environment and the comparison with a standard validation method. Nowadays, functional nanomaterials are designed and applied in electrochemical biosensing to support all these challenges. This review will address the integration of functional nanomaterials in the development of electrochemical biosensors for the rapid diagnosis of viral infections, such as COVID-19, middle east respiratory syndrome (MERS), influenza, hepatitis, human immunodeficiency virus (HIV), and dengue, among others. The role and relevance of the nanomaterial, the type of biosensor, and the electrochemical technique adopted will be discussed. Finally, the critical issues in applying laboratory research to the analysis of real samples, future perspectives, and commercialization aspects of electrochemical biosensors for virus detection will be analyzed.


Subject(s)
Biological Science Disciplines , Biosensing Techniques , COVID-19 , Nanostructures , Humans , COVID-19/diagnosis , Biosensing Techniques/methods , Electrochemical Techniques
5.
Small Methods ; 7(7): e2300034, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2318004

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the global coronavirus disease 2019 (COVID-19) pandemic, has caused well over 750 million infections and 6.8 million deaths. Rapid diagnosis and isolation of infected patients are the primary aims of the concerned authorities to minimize the casualties. The endeavor to mitigate the pandemic has been impeded by the emergence of newly identified genomic variants of SARS-CoV-2. Some of these variants are considered as serious threats because of their higher transmissibility and potential immune evasion, leading to reduced vaccine efficiency. Nanotechnology can play an important role in advancing both diagnosis and therapy of COVID-19. In this review, nanotechnology-based diagnostic and therapeutic strategies against SARS-CoV-2 and its variants are introduced. The biological features and functions of the virus, the mechanism of infection, and currently used approaches for diagnosis, vaccination, and therapy are discussed. Then, nanomaterial-based nucleic acid- and antigen-targeting diagnostic methods and viral activity suppression approaches that have a strong potential to advance both diagnostics and therapeutics toward control and containment of the COVID-19 pandemic are focused upon.


Subject(s)
COVID-19 , Nanostructures , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/therapy , Pandemics/prevention & control , Nanotechnology , COVID-19 Testing
6.
J Nanobiotechnology ; 21(1): 149, 2023 May 06.
Article in English | MEDLINE | ID: covidwho-2316616

ABSTRACT

Surface-Enhanced Raman Scattering (SERS) technology, as a powerful tool to identify molecular species by collecting molecular spectral signals at the single-molecule level, has achieved substantial progresses in the fields of environmental science, medical diagnosis, food safety, and biological analysis. As deepening research is delved into SERS sensing, more and more high-performance or multifunctional SERS substrate materials emerge, which are expected to push Raman sensing into more application fields. Especially in the field of biological analysis, intrinsic and extrinsic SERS sensing schemes have been widely used and explored due to their fast, sensitive and reliable advantages. Herein, recent developments of SERS substrates and their applications in biomolecular detection (SARS-CoV-2 virus, tumor etc.), biological imaging and pesticide detection are summarized. The SERS concepts (including its basic theory and sensing mechanism) and the important strategies (extending from nanomaterials with tunable shapes and nanostructures to surface bio-functionalization by modifying affinity groups or specific biomolecules) for improving SERS biosensing performance are comprehensively discussed. For data analysis and identification, the applications of machine learning methods and software acquisition sources in SERS biosensing and diagnosing are discussed in detail. In conclusion, the challenges and perspectives of SERS biosensing in the future are presented.


Subject(s)
Biosensing Techniques , COVID-19 , Nanostructures , Humans , Spectrum Analysis, Raman/methods , SARS-CoV-2 , Nanostructures/chemistry , Nanotechnology , Biosensing Techniques/methods
7.
Biosensors (Basel) ; 13(4)2023 Mar 23.
Article in English | MEDLINE | ID: covidwho-2315555

ABSTRACT

Biosensors are analytical tools that can be used as simple, real-time, and effective devices in clinical diagnosis, food analysis, and environmental monitoring. Nanoscale functional materials possess unique properties such as a large surface-to-volume ratio, making them useful for biomedical diagnostic purposes. Nanoengineering has resulted in the increased use of nanoscale functional materials in biosensors. Various types of nanostructures i.e., 0D, 1D, 2D, and 3D, have been intensively employed to enhance biosensor selectivity, limit of detection, sensitivity, and speed of response time to display results. In particular, carbon nanotubes and nanofibers have been extensively employed in electrochemical biosensors, which have become an interdisciplinary frontier between material science and viral disease detection. This review provides an overview of the current research activities in nanofiber-based electrochemical biosensors for diagnostic purposes. The clinical applications of these nanobiosensors are also highlighted, along with a discussion of the future directions for these materials in diagnostics. The aim of this review is to stimulate a broader interest in developing nanofiber-based electrochemical biosensors and improving their applications in disease diagnosis. In this review, we summarize some of the most recent advances achieved in point of care (PoC) electrochemical biosensor applications, focusing on new materials and modifiers enabling biorecognition that have led to improved sensitivity, specificity, stability, and response time.


Subject(s)
Biosensing Techniques , Nanofibers , Nanostructures , Nanotubes, Carbon , Electrochemical Techniques/methods , Nanostructures/chemistry , Biosensing Techniques/methods
8.
J Control Release ; 358: 476-497, 2023 06.
Article in English | MEDLINE | ID: covidwho-2315404

ABSTRACT

Antiviral peptides and antiviral polysaccharides can play a major role in the prevention and treatment of emerging viral health problems. These antiviral compounds are biocompatible, environmentally friendly, non-toxic, and cost-effective, yet are poorly water soluble and vulnerable to enzymatic (protease) degradation within the aggressive intercellular microenvironment. Therefore, they should be properly protected and delivered to viruses and host cells by the well-designed nanocarriers that mimic viruses in terms of size, morphology, and smart function. This literature review is meant to introduce the latest advances (mainly within the past five years) in antiviral nano-assemblies comprising antiviral peptides or antiviral polysaccharides. To the best of our knowledge, there is no similar study in the literature that has solely and sufficiently investigated such antiviral nanomaterials partially or totally derived from nature. The rational classification of microorganism-, plant-, and animal-derived antiviral polysaccharide and antiviral peptide delivering nanomaterials and exploration of their relevant applications will clarify the promising capacity of these state-of-the-art materials for a number of technologies developed to inactivate viruses.


Subject(s)
COVID-19 , Nanostructures , Virus Diseases , Viruses , Animals , Antiviral Agents/chemistry , SARS-CoV-2 , Virus Diseases/drug therapy , Peptides/metabolism , Polysaccharides
9.
Sensors (Basel) ; 23(6)2023 Mar 21.
Article in English | MEDLINE | ID: covidwho-2309587

ABSTRACT

DNA has been actively utilized as bricks to construct exquisite nanostructures due to their unparalleled programmability. Particularly, nanostructures based on framework DNA (F-DNA) with controllable size, tailorable functionality, and precise addressability hold excellent promise for molecular biology studies and versatile tools for biosensor applications. In this review, we provide an overview of the current development of F-DNA-enabled biosensors. Firstly, we summarize the design and working principle of F-DNA-based nanodevices. Then, recent advances in their use in different kinds of target sensing with effectiveness have been exhibited. Finally, we envision potential perspectives on the future opportunities and challenges of biosensing platforms.


Subject(s)
Biosensing Techniques , Nanostructures , DNA/chemistry , Nanostructures/chemistry
10.
Biosens Bioelectron ; 215: 114580, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2311736

ABSTRACT

Rational detection of syndrome coronavirus 2 (SARS-CoV-2) is crucial to prevention, control, and treatment of disease. Herein, a dual-wavelength ratiometric electrochemiluminescence (ECL) biosensor based on resonance energy transfer (RET) between g-C3N4 nanosheets and Ru-SiO2@folic acid (FA) nanomaterials was designed to realize ultrasensitive detection of SARS-CoV-2 virus (RdRp gene). Firstly, the unique g-C3N4 nanosheets displayed very intense and stable ECL at 460 nm, then the triple helix DNA was stably and vertically bound to g-C3N4 on electrode by high binding affinity between ssDNA and g-C3N4. Meanwhile, trace amounts of target genes were converted to a large number of output by three-dimensional (3D) DNA walker multiple amplification, and the output bridged a multifunctional probe Ru-SiO2@FA to electrode. Ru-SiO2@FA not only showed high ECL at 620 nm, but also effectively quenched g-C3N4 ECL. As a result, ECL decreased at 460 nm and increased at 620 nm, which was used to design a rational ECL biosensor for detection of SARS gene. The results show that the biosensor has excellent detection sensitivity for RdRp gene with a dynamic detection range of 1 fM to 10 nM and a limit of detection (LOD) of 0.18 fM. The dual-wavelength ratio ECL biosensor has inestimable value and application prospects in the fields of biosensing and clinical diagnosis.


Subject(s)
Biosensing Techniques , COVID-19 , Biosensing Techniques/methods , COVID-19/diagnosis , DNA , Electrochemical Techniques/methods , Energy Transfer , Folic Acid , Humans , Limit of Detection , Luminescent Measurements/methods , Nanostructures , RNA-Dependent RNA Polymerase , Ruthenium , SARS-CoV-2/genetics , Silicon Dioxide
11.
Mikrochim Acta ; 190(4): 143, 2023 03 18.
Article in English | MEDLINE | ID: covidwho-2300602

Subject(s)
Diagnosis , Nanostructures
12.
Biosensors (Basel) ; 13(3)2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2305462

ABSTRACT

Food safety has always been a major global challenge to human health and the effective detection of harmful substances in food can reduce the risk to human health. However, the food industry has been plagued by a lack of effective and sensitive safety monitoring methods due to the tension between the cost and effectiveness of monitoring. DNA-based hydrogels combine the advantages of biocompatibility, programmability, the molecular recognition of DNA molecules, and the hydrophilicity of hydrogels, making them a hotspot in the research field of new nanomaterials. The stimulus response property greatly broadens the function and application range of DNA hydrogel. In recent years, DNA hydrogels based on stimulus-responsive mechanisms have been widely applied in the field of biosensing for the detection of a variety of target substances, including various food contaminants. In this review, we describe the recent advances in the preparation of stimuli-responsive DNA hydrogels, highlighting the progress of its application in food safety detection. Finally, we also discuss the challenges and future application of stimulus-responsive DNA hydrogels.


Subject(s)
Biosensing Techniques , Nanostructures , Humans , Hydrogels , Food Safety , DNA , Biosensing Techniques/methods
13.
Biosensors (Basel) ; 13(4)2023 Mar 31.
Article in English | MEDLINE | ID: covidwho-2294546

ABSTRACT

The current state in the development of biosensors is largely associated with the search for new approaches to simplify measurements and lower detection limits [...].


Subject(s)
Biosensing Techniques , Nanostructures , Immunoassay
14.
Anal Chem ; 95(12): 5267-5274, 2023 03 28.
Article in English | MEDLINE | ID: covidwho-2289024

ABSTRACT

Ultrasensitive evaluation of low-abundance analytes, particularly with limits approaching a single molecule, is a key challenge in the design of an assay for profiling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen. Herein, we report an aptamer claw strategy for directly evaluating the SARS-CoV-2 antigen based on gold particle-in-a-frame nanostructures (Au PIAFs). Au PIAF was used as a metal-enhanced fluorescence material. The assay integrated with a microplate reader achieved a sensitivity of 44 fg·mL-1 in under 3 min and accurately detected the SARS-CoV-2 nucleocapsid protein (N protein) in human saliva samples. When our assay is combined with a single-molecule counting platform, the limit of detection can be as low as 0.84 ag·mL-1. This rapid and ultrasensitive assay holds promise as a tool for screening SARS-CoV-2 and other contagious viruses.


Subject(s)
COVID-19 , Nanostructures , Humans , SARS-CoV-2 , COVID-19/diagnosis , Nanotechnology , Sensitivity and Specificity , Gold
15.
Biosensors (Basel) ; 13(2)2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2259573

ABSTRACT

Catecholamines, including dopamine, epinephrine, and norepinephrine, are considered one of the most crucial subgroups of neurotransmitters in the central nervous system (CNS), in which they act at the brain's highest levels of mental function and play key roles in neurological disorders. Accordingly, the analysis of such catecholamines in biological samples has shown a great interest in clinical and pharmaceutical importance toward the early diagnosis of neurological diseases such as Epilepsy, Parkinson, and Alzheimer diseases. As promising routes for the real-time monitoring of catecholamine neurotransmitters, optical and electrochemical biosensors have been widely adopted and perceived as a dramatically accelerating development in the last decade. Therefore, this review aims to provide a comprehensive overview on the recent advances and main challenges in catecholamines biosensors. Particular emphasis is given to electrochemical biosensors, reviewing their sensing mechanism and the unique characteristics brought by the emergence of nanotechnology. Based on specific biosensors' performance metrics, multiple perspectives on the therapeutic use of nanomaterial for catecholamines analysis and future development trends are also summarized.


Subject(s)
Biosensing Techniques , Nanostructures , Catecholamines , Electrochemical Techniques , Neurotransmitter Agents
16.
Adv Mater ; 35(22): e2300380, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2268716

ABSTRACT

Currently, the global COVID-19 pandemic has significantly increased the public attention toward the spread of pathogenic viruses and bacteria on various high-frequency touch surfaces. Developing a self-disinfecting coating on a touchscreen is an urgent and meaningful task. Superlattice materials are among the most promising photocatalysts owing to their efficient charge transfer in abundant heterointerfaces. However, excess electronic defects at the heterointerfaces result in the loss of substantial amounts of photogenerated charge carrier. In this study, a ZnOFe2 O3 superlattice nanofilm is designed via atomic layer deposition for photocatalytic bactericidal and virucidal touchscreen. Additionally, electronic defects in the superlattice heterointerface are engineered. Photogenerated electrons and holes will be rapidly separated and transferred into ZnO and Fe2 O3 across the heterointerfaces owing to the formation of ZnO, FeO, and ZnFe covalent bonds at the heterointerfaces, where ZnO and Fe2 O3 function as electronic donors and receptors, respectively. The high generation capacity of reactive oxygen species results in a high antibacterial and antiviral efficacy (>90%) even against drug-resistant bacteria and H1N1 viruses under simulated solar or low-power LED light irradiation. Meanwhile, this superlattice nanofilm on a touchscreen shows excellent light transmission (>90%), abrasion resistance (106 times the round-trip friction), and biocompatibility.


Subject(s)
Nanostructures , Nanostructures/chemistry , Electrons , Catalysis , Photochemistry/methods , Escherichia coli , Staphylococcus aureus , Influenza A Virus, H1N1 Subtype , Microbial Viability
17.
Biosensors (Basel) ; 13(2)2023 Jan 21.
Article in English | MEDLINE | ID: covidwho-2264794

ABSTRACT

Proteolytic enzymes are one of the important biomarkers that enable the early diagnosis of several diseases, such as cancers. A specific proteolytic enzyme selectively degrades a certain sequence of a polypeptide. Therefore, a particular proteolytic enzyme can be selectively quantified by changing detectable signals causing degradation of the peptide chain. In addition, by combining polypeptides with various functional nanomaterials, proteolytic enzymes can be measured more sensitively and rapidly. In this paper, proteolytic enzymes that can be measured using a polypeptide degradation method are reviewed and recently studied functional nanomaterials-based proteolytic biosensors are discussed. We anticipate that the proteolytic nanobiosensors addressed in this review will provide valuable information on physiological changes from a cellular level for individual and early diagnosis.


Subject(s)
Biosensing Techniques , Nanostructures , Peptide Hydrolases , Biomarkers , Peptides , Biosensing Techniques/methods
18.
Curr Top Med Chem ; 23(2): 115-127, 2023.
Article in English | MEDLINE | ID: covidwho-2277620

ABSTRACT

Since late 2019, the novel coronavirus (COVID-19) pandemic has caused considerable mortality worldwide. This pandemic raised concerns and provoked research on the diagnosis and treatment of viruses-based diseases. The accurate diagnosis of a virus requires high specificity and sensitivity. Piezoelectric sensors are analytical devices that work on mass-sensitivity-based micromechanical transducers. The change in the mass by the interaction between biological elements and the frequency is recorded by measuring the alternate current and voltage. In addition to diagnosis, antiviral intervention strategies for mitigating various viral diseases are required. Nanomaterialsbased antiviral therapy is efficient, particularly with carbon/metal/metal oxide (organic/inorganic) nanoparticles. Metal/metal oxide nanoparticles, such as gold (Au), silver (Ag), copper (Cu), selenium (Se), zinc oxide (ZnO), magnesium oxide (MgO), carbon dots (CDs), and carbon quantum dots (CQDs), are promising candidates for antiviral therapy. This review discusses the piezoelectric sensors used to detect various viruses, including COVID-19, and the various organic and inorganic nanoparticles involved in the antiviral therapy.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Nanostructures , Viruses , Humans , Nanostructures/therapeutic use , Carbon , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Oxides
19.
Adv Sci (Weinh) ; 10(6): e2205429, 2023 02.
Article in English | MEDLINE | ID: covidwho-2257470

ABSTRACT

The focus on precise medicine enhances the need for timely diagnosis and frequent monitoring of chronic diseases. Moreover, the recent pandemic of severe acute respiratory syndrome coronavirus 2 poses a great demand for rapid detection and surveillance of viral infections. The detection of protein biomarkers and antigens in the saliva allows rapid identification of diseases or disease changes in scenarios where and when the test response at the point of care is mandated. While traditional methods of protein testing fail to provide the desired fast results, electrochemical biosensors based on nanomaterials hold perfect characteristics for the detection of biomarkers in point-of-care settings. The recent advances in electrochemical sensors for salivary protein detection are critically reviewed in this work, with emphasis on the role of nanomaterials to boost the biosensor analytical performance and increase the reliability of the test in human saliva samples. Furthermore, this work identifies the critical factors for further modernization of the nanomaterial-based electrochemical sensors, envisaging the development and implementation of next-generation sample-in-answer-out systems.


Subject(s)
Biosensing Techniques , COVID-19 , Nanostructures , Humans , Saliva , Reproducibility of Results , COVID-19/diagnosis , Electrochemical Techniques , Biomarkers , Biosensing Techniques/methods
20.
ACS Biomater Sci Eng ; 9(3): 1656-1671, 2023 03 13.
Article in English | MEDLINE | ID: covidwho-2271527

ABSTRACT

As the world braces to enter its fourth year of the coronavirus disease 2019 (COVID-19) pandemic, the need for accessible and effective antiviral therapeutics continues to be felt globally. The recent surge of Omicron variant cases has demonstrated that vaccination and prevention alone cannot quell the spread of highly transmissible variants. A safe and nontoxic therapeutic with an adaptable design to respond to the emergence of new variants is critical for transitioning to the treatment of COVID-19 as an endemic disease. Here, we present a novel compound, called SBCoV202, that specifically and tightly binds the translation initiation site of RNA-dependent RNA polymerase within the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome, inhibiting viral replication. SBCoV202 is a Nanoligomer, a molecule that includes peptide nucleic acid sequences capable of binding viral RNA with single-base-pair specificity to accurately target the viral genome. The compound has been shown to be safe and nontoxic in mice, with favorable biodistribution, and has shown efficacy against SARS-CoV-2 in vitro. Safety and biodistribution were assessed using three separate administration methods, namely, intranasal, intravenous, and intraperitoneal. Safety studies showed the Nanoligomer caused no outward distress, immunogenicity, or organ tissue damage, measured through observation of behavior and body weight, serum levels of cytokines, and histopathology of fixed tissue, respectively. SBCoV202 was evenly biodistributed throughout the body, with most tissues measuring Nanoligomer concentrations well above the compound KD of 3.37 nM. In addition to favorable availability to organs such as the lungs, lymph nodes, liver, and spleen, the compound circulated through the blood and was rapidly cleared through the renal and urinary systems. The favorable biodistribution and lack of immunogenicity and toxicity set Nanoligomers apart from other antisense therapies, while the adaptability of the nucleic acid sequence of Nanoligomers provides a defense against future emergence of drug resistance, making these molecules an attractive potential treatment for COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Genome, Viral , Nanomedicine , Nanostructures , Oligoribonucleotides , Peptide Nucleic Acids , SARS-CoV-2 , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Drug Treatment/adverse effects , COVID-19 Drug Treatment/methods , Nanostructures/administration & dosage , Nanostructures/adverse effects , Nanostructures/therapeutic use , Nanomedicine/methods , Patient Safety , Peptide Nucleic Acids/administration & dosage , Peptide Nucleic Acids/adverse effects , Peptide Nucleic Acids/pharmacokinetics , Peptide Nucleic Acids/therapeutic use , Oligoribonucleotides/administration & dosage , Oligoribonucleotides/adverse effects , Oligoribonucleotides/pharmacokinetics , Oligoribonucleotides/therapeutic use , Animals , Mice , Mice, Inbred BALB C , In Vitro Techniques , Genome, Viral/drug effects , Genome, Viral/genetics , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL